	Enrollm	ent No•		Exam Seat No:				
	Linonin	CIII 110.						
	C.U.SHAH UNIVERSITY							
	Winter Examination-2022							
	Subject 2	Name: T	opology					
	Subject Code: 4SC06TOP1			Branch: B.Sc. (Mathematics)				
	Semester	r: 6	Date: 22/09/2022	Time: 11:00 To 02:00	Marks: 70			
	Instruction	ons:						
			ogrammable calculator & ar	ny other electronic instrument is pr	ohibited.			
				book are strictly to be obeyed.				
			nt diagrams and figures (if ne	ecessary) at right places.				
	(4)	Assume s	suitable data if needed.					
Λ 1		Attom	ot the following questions:		(1	4)		
Q-1	a)	-	pt the following questions: Topology.		•	(4) (1)		
	b)		= {1,2,3}, write discreate top	oology on X.	•	1)		
	c)		:Usual topology on R	6108) 611111	•	1)		
	d)		1 00	countable topology. Which topolo	·) 1)		
		stronge	er than the other?					
	e)		cample of Door space.		•	1)		
	f)		Exterior of set.		•	1)		
	g)		Closure of set.		•	1)		
	h)		e that $(A \cap B)^0 = A^0 \cap B^0$?		·	1)		
	i)		ilse: $\overline{\overline{A}} = \overline{A}$.			1)		
	j)		Continuous function.		•	1)		
	k)		Homeomorphism.		·	1)		
	l)		Disconnected space T ₁ space.		·)1))1)		
	m) n)		: Compact space.		•)1))1)		
	11)	Define	. Compact space.		(0	1)		
Atte	empt any f	four que	stions from Q-2 to Q-8					
Q-2		_	pt all questions		(1	4)		
-	a)	Let X b	e a set.		(0	(5)		
				X or $X - U$ is countable then prove	that (X, τ_c)			
		_	logical space.					
	b)		be topological space. Then pr	rove that,	(0	(5)		
		. ,	are closed					
		(11) An	y arbitrary union of open sets	s in X is open.				

(i) Co countable topology (ii) Co – finite topology (iii) Indiscrete topology

Let (X, τ) be a topological space & A, B be two subsets of X then prove that,

(iii) Any finite intersection of open sets in *X* is open.

(iv) Discrete topology **Attempt all questions**

Q-3

Let *X* be a non-empty set. Compare the following topology,

(04)

(14)

(06)

		(i) If $A \subset B$ then $extB \subset ext A$.			
		(ii) $ext(A \cup B) = ext A \cap ext B$.			
		(iii) $ext(A \cap B) = ext A \cup ext B$.			
	b)	Let (X, τ) be a topological space and Y be a non empty subset of X then prove	(06		
	·	that the collection $\tau_v = \{U \cap Y \mid U \in \tau\}$ is a topology on Y.			
	c)	Let $X = R$ and $A = (2,3)$, find A^0 and A' .	(02		
Q-4	- /	Attempt all questions	(14		
	a)				
	b)	Let X and Y be a topological space and $f: X \to Y$, then prove that following are equivalent	(06		
		(i) f is continuous.			
		(ii) For every subset A of X then $f(\bar{A}) \subset \overline{f(A)}$.			
		(iii) For every close set B in Y then $f^{-1}(B)$ is closed in X.			
	c)	Let (X, τ) be disconnected space and τ' is finer than τ . Prove that (X, τ') is	(03)		
		disconnected.			
Q-5		Attempt all questions	(14		
	a)	Let X, Y, Z be topology space and $f: X \to Y$ and $g: Y \to Z$ are continuous	(05)		
		functions then prove that $gof: X \to Z$ is continuous.			
	b)	Prove that indiscrete topology is not T_0 space.	(05)		
	c)	Is <i>R</i> compact space with usual topology? Justify your answer.	(04)		
Q-6		Attempt all questions	(14)		
	a)	Prove that every closed subset of compact space is compact.	(07		
	b)	Prove that continuous image of compact space is compact.	(07		
Q-7		Attempt all questions	(14)		
	a)	Prove that every compact subset of T_2 space is closed.	(07		
	b)	Prove that continuous image of connected space is connected.	(07		
Q-8		Attempt all questions	(14)		
	a)	State and prove Heine Borel theorem.	(10)		
	b)	Prove that every subspace of T_1 space is T_1 space.	(04)		

